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ABSTRACT 
Knowing the soil’s strength properties is a vital component to accurately 

develop Go/No-Go mobility maps for the Next Generation NATO Reference 

Mobility Model (NG-NRMM). The Unified Soil Classification System (USCS) and 

soil strength of the top 0-6” and 6-12” of the soil are essential terrain inputs for 

the model. Current methods for the NG-NRMM require in-situ measurement of soil 

strength using a bevameter, cone penetrometer, or other mechanical contact 

device. This study examines the use of hyperspectral and thermal imagery to 

provide ways of remotely characterizing soil type and strength.  Hyperspectral 

imaging provides unique spectrums for each soil where a Soil Classification Index 

(SCI) was developed to predict the gradation of the soil types. This gradation 

provides a means of identifying the soil type via the major divisions within the 

USCS classification system. Thermal imagery is utilized to collect the Apparent 

Thermal Inertia (ATI) for each pit, which is then correlated to the soil strength. 
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1. INTRODUCTION 
 There is work currently being done to 

characterize terrain strength and land mapping for 

autonomous mobility and simulation modeling. 

The mobility of military vehicles in unknown 

territories is one such example. The terrain strength 

parameter is one of the critical inputs for 

developing the Go/No-Go mobility maps that are 

used for autonomous mobility. Past models for 

characterizing the terrain strength have relied 

primarily on in-situ measurements. Bevameters 

have been the traditional best choice for the in-situ 

approximation of soil strength [1]. The bevameter 

is quite expensive and difficult to transport, so the 

cone penetrometer is an excellent second choice for 

collecting terrain strength [1, 2]. However, in-situ 

measurements are challenging to obtain in war-
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zones and could potentially place soldiers at risk. 

Therefore, developing alternate approaches for in-

situ terrain strength characterization is a priority for 

autonomous mobility [3]. 

Another critical component for the mobility maps 

is knowing the soil type of the area. The standard 

for characterizing a soil type within engineering is 

the Unified Soil Classification System (USCS), 

which describes the gradation and texture of a soil 

[4]. Having a standardized soil classification via the 

USCS is useful to help develop soil type mapping. 

One of the essential details that control the physical 

and mechanical properties of the soil is the grain 

size distribution (gradation). The gradation of a soil 

carries key details about the soil’s mechanical 

behavior, studies have shown that one could create 

an index to correlate to these values [5]. 

An alternative for in-situ soil characterization is 

the use of remote sensing technology. Remote 

sensing has evolved with more computational 

capabilities and improved sensors to be a more 

time-efficient and accurate tool that continues to 

grow [6]. Remote sensing offers an efficient and 

rapid collection over an area of interest safely and 

cost-effectively. Stark [7] has done previous work 

studying the use of cameras, Unmanned Aerial 

Vehicles (UAV)s, and satellites to estimate sand 

lower bound friction angles and bearing strength. 

Remote sensing has many different types, based on 

the wavelength used for sensing and spectral 

resolution such as hyperspectral, multispectral, 

thermal, etc. 

Hyperspectral imaging is one branch of remote 

sensing that has been used for the improvement of 

target recognition, and background characterization 

[8], show potential to provide new methods for soil 

mapping [9], and can be used to estimate different 

features for a bare soil [10]. Thermal remote 

sensing provides a simple approach to getting 

information about the subsurface properties of the 

soil. Archeologists have used this for identifying 

the location of buried structures [11] and buried 

objects [12]. It has also similarly been used to 

quantify moisture at soil sites and mine tailings 

[13], and relating Thermal Inertia (TI) / Apparent 

Thermal Inertia (ATI) to land use/land cover 

mapping [14].  ATI has been used for studying 

mobility purposes as well [15], identifying the 

morphology and composition of Mars [16], and TI 

for examining heterogeneity of Mars [17]  

As a non-destructive and efficient data collection 

method, remote sensing shows great promise for 

soil characterization purposes. For our approach, 

we examine the use of hyperspectral remote 

sensing within the visible and near-infrared (NIR) 

range (400-1000nm). We show the use of 

hyperspectral imagery to provide a soil 

classification index, which in turn helps predict the 

gradation of five distinct soil types. In addition, 

using thermal imaging, we look at the utility of the 

ATI to predict the soil strength of each soil type in 

terms of soil stiffness and cone penetrometer 

measurements. We hypothesis that ATI being a 

function of the object property of the material, will 

be correlated to the strength of the soil. All leading 

to a safe, effective means for developing mobility 

maps without putting soldiers at risk. 

 

2. METHODOLOGY 
In this study, we used five different soil types 

from the mobility tracks at the Keweenaw Research 

Center (KRC).  The soil type at these tracks is 

known as Fine, Coarse, Rink, Stability, and 2NS, 

which contain different amounts of gravel, sand, 

and fine particles. Figure 1 shows the original 

locations, and Table 1 lists the % gravel, % sand, 

and % fine content for each of the soil types. 

 

 

Figure 1: Five soil locations on-site at the Keweenaw 

Research Center, Houghton, Michigan 
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2.1. Remote Sensing 
Remote sensing is the process of quantifying the 

physical characteristics of an object by measuring 

the reflected and emitted components of the 

Electro-Magnetic (EM) spectrum. The variations in 

the characteristics of an object such as roughness, 

texture, colors, etc. influence the reflectance or 

emittance of the EM spectrum. This influence leads 

to unique spectral characteristics for different 

objects. Different cameras can detect the different 

wavelengths of the EM spectrum [18-20]. Some 

cameras can sense several narrow EM wavelengths, 

whereas some other cameras can detect fewer 

broader EM wavelengths. Depending on the 

number of wavelengths and the width of the 

wavelength that the camera can sense, it can be 

differentiated as a multispectral or hyperspectral 

camera. A multispectral camera typically detects 

few bands (e.g., 3 to 10 bands), with each band 

being a broader wavelength. On the other hand, the 

hyperspectral camera detects a large number of 

bands (e.g., hundreds or thousands of bands), with 

each band being a narrower wavelength.  Remote 

sensing cameras are also classified based on the 

wavelength range that it measures. 

In this study, we use a hyperspectral camera that 

is sensitive to the visible and near-infrared 

spectrum (400-1000 nm) that captures 120 bands 

with spectral accuracy of ~ 5-7 nm full width at half 

maximum (FWHM). We also use a thermal camera 

(7.5-13.5 μm) which quantifies the temperature of 

an object. Thermal imagery measures the emitted 

radiance of the material, quantifying the material's 

bulk properties. The thermal remote sensing 

provides a unique opportunity to understand the 

bulk properties of the object based on its emittance. 

In contrast, most other spectral wavelength 

measurements capture the reflected property from 

the surface of the object. 

 

2.2. Thermal Inertia / Apparent Thermal 
Inertia 

Thermal Inertia (TI) is a measure of the object to 

absorb and store heat in an object. Equation 1 

displays the formula for estimating the TI of a 

material, where k is the thermal conductivity, ρ is 

the bulk density, and c is the specific heat [21, 22]. 

These parameters for TI require in-situ 

measurements. An approximation of the TI value, 

however, can be done via the Apparent Thermal 

Inertia (ATI) [22]. ATI can be remotely sensed by 

capturing two thermal images at different time 

points and estimating the albedo. Equation 2 gives 

the formula for calculating the ATI, where α is 

albedo and ∆T is the temperature difference.  

 

𝑇𝐼 = √𝑘𝜌𝑐    (1) 

 

𝐴𝑇𝐼 = (1 − 𝛼)/∆𝑇    (2) 

 

2.3. Laboratory Testing 
Laboratory experiments were carried out in a 

controlled environment. During these experiments 

each of the soils were separated into individual bins 

of 2ft x 2 ft x 1 ft (length x width x height) bins with 

two 500-Watt work lights one meter above each. 

The soils for each experiment were initially tested 

with a Humboldt GeoGauge (for soil stiffness) and 

volumetric water content (moisture) probes. 

Table 1: The % gravel, % sand, % fine content, and 

USCS classification for each of the soil types obtained 

from KRC. 
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Following that a FLIR Duo R camera was used to 

collect the initial thermal image of the soil. Then 

the BaySpec hyperspectral camera was run along a 

track at nadir one meter above the soil surface. 

Finally at the end of 4 hours with heating from the 

work lights, the final thermal image was recorded 

for each pit. 

 

2.4. Summer Field Work 
In the summer of 2019, we expanded this study to 

the field and tested at the KRC test tracks where the 

soils used in the lab study were obtained. These soil 

pits are smoothed over by KRC, and various 

moisture contents for the soils were tested during 

the experiments. The field tests were carried out by 

mounting the BaySpec hyperspectral and FLIR 

thermal cameras to the UAV, where they were then 

flown on the UAV for collection, as seen in Figure 

2. 

 

 
After the morning flight, we went out and 

collected the GeoGauge stiffness value, ASD 

Handheld Pro (albedo), and cone penetrometer 

(cone index) for each pit. Multiple tests were done 

to collect each parameter in the middle and at each 

end of the pits. The moisture was collected each day 

via in-situ soil samples collected. A second thermal 

image required for estimating ATI was obtained 

using the UAV in the afternoon. 

 

3. RESULTS  
The laboratory experiments showed great promise 

for identifying unique reflectance spectrums for 

each soil from the hyperspectral imaging as shown 

in Figure 3. Utilizing these unique spectra, a Soil 

Classification Index (SCI) was developed. The SCI 

is computed based on three bands: 550 nm, 600 nm, 

and 650 nm (shown in Figure 3). The formula for 

calculating SCI is given by Equation 3, where R550 

is the reflectance of the band at wavelength 550 nm, 

R600 and R650 similarly. This index has the ability 

to distinguish a soil’s gradation, or rather, the % 

gravel, % sand, and % fine (whatever is remaining 

after % gravel and % sand) content of the soil. SCI 

works with four of the five soils for % gravel 

prediction (R^2 = 0.8291), and all soils for % sand 

(R^2 = 0.7496). The SCI’s correlation between SCI 

to % gravel and % sand content is displayed in 

figure 4. 

 

 
 

𝑆𝐶𝐼 = (𝑅650 − 𝑅550)/𝑅600   (3) 

 

 
A B C 

Figure 2: UAV with loaded sensors (hyperspectral 

and thermal) (A), setup and calibration of the cameras 

(B), and UAV inflight to record over the Fine Pit (C). 

Figure 3: Shows the hyperspectral plots for each soil 

and the location of the needed values for the soil 

classification index. Each colored box and the 

corresponding line are a different soil type. Going from 

left to right: Fine, Coarse, Rink, Stability, and 2NS. The 

range of the camera is from 400 – 1000 nm. 
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Using SCI trends from the lab, prediction maps 

were built from the hyperspectral scans to identify 

soil gradation from the summer 2019 fieldwork at 

KRC. Examples of these prediction plots overlaid 

on the digital elevation models (DEMs) are shown 

in Figure 5. These soils then can be classified into 

their different gradations. Table 2 below shows 

what the actual and predicted gradation parameters 

of the soils are. 

  

 

 
 

Next the remotely sensed ATI plots were overlaid 

onto the DEMs for each of the pits, as seen in 

Figure 6. Using the average ATI value from each 

soil pit, a linear relationship was found between the 

ATI and GeoGauge stiffness (Figure 7) for 4 of the 

five soil types. Another linear trend was also found 

for the ATI and cone penetrometer (Figure 8) 

strength values for all soil types, excluding Fine pit.  

 

 
 

 

 

A B 
C 

D 
E 

Figure 4: Trend lines for % gravel (top) and % sand 

(bottom) content among the five soils as recorded by the 

BaySpec hyperspectral camera. 

Figure 5: Examples of hyperspectral scans for gradation 

prediction maps for different soil pits overlaid on DEMs. 

2NS pit % sand prediction plot (Left), Coarse pit (Right). 

Table 2: Actual and Predicted values for the % gravel, 

% sand, % fine, D10, D30, D60, Cu, and Cc for each of 

the five soils. 

Figure 6: ATI prediction map for Fine pit overlaid on 

DEM. Green is low ATI and red is high ATI values. Fine 

(A), 2NS (B), Stability (C), Coarse (D), and Rink (E). 
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4. ANALYSIS AND DISCUSSION  
The SCI works for four of the five soil types 

examined for determining the % gravel content 

(R^2=0.8291) and works for all five soils for 

determining the % sand (R^2=0.7496). The only 

soil the SCI does not work for is the Fine soil pit. 

The SCI is delegated for gradation purposes, and 

when determining the % gravel, there is 0% gravel 

for the fine pit. Since there is no gravel versus even 

a little as is the case with 2NS, the Fine pit fails for 

predicting the % gravel. If further tests were 

developed to allow for more distinction within the 

“fine content” portion of the soil, one could then 

attempt to use the USCS system for classifying 

these pits. 

Cone penetrometer was also able to be 

approximated for four of the five pits (not including 

Fine pit). It was also shown with thermal imagery; 

we can estimate the GeoGauge stiffness for all soils 

but the Stability pit. Between these two different 

soil strength measurements, we are able to predict 

all five soil type strengths, whether that is in terms 

of cone index (psi) or stiffness (Mega-

Netwon/meter). The ATI to mean soil strength 

values have R^2 values for of 0.9281 for GeoGauge 

stiffness and 0.8372 for cone penetrometer. Linear 

regression was built based on field collection to 

develop prediction plots. 

Initial results are promising from both the field 

and the laboratory data, indicating that utilizing 

both thermal and hyperspectral imaging, we can 

derive useful inputs such as soil gradation, cone 

index, and soil stiffness for terrain strength 

characterization. Hence through remote sensing, a 

less expensive, more rapid, and safer method of 

data collection for soldiers to gather soil strength 

can be utilized for mobility modeling and 

simulation. 

 

5. CONCLUSIONS AND FUTURE WORK  
In conclusion, using hyperspectral imagery, we 

were able to build soil gradation prediction plots 

utilizing only remotely collected data. This method 

is possible using SCI and its ability to predict the 

gradation of the soil: % gravel, % sand, and % fine 

content. These predicted soil gradations could help 

give us the estimates of soil type for the soil pits we 

tested. 

The use of thermal imagery provides a method for 

collecting the ATI of each soil pit. The ATI is 

correlated to both the in-situ measurements of 

GeoGauge stiffness and cone penetrometer 

measurements. These in-situ measurements are an 

estimate of the soil strength at a particular location. 

This soil strength can, therefore, now be predicted 

using only remotely collected values. Hence, we 

Figure 7: Relationship between Apparent Thermal 

Inertia (ATI) and GeoGauge stillness [Mega-Newton / 

meter]. 

Figure 8: Relationship between Apparent 

Thermal Inertia (ATI) and cone penetrometer [psi]. 
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are able to now develop soil strength maps 

remotely, without the necessity of in-situ 

measurements. 

With the combinations from both sensors, one can 

develop the best approximation for the soil strength 

remotely, and thereby allow a safer methodology 

for Go/No Go mobility map development. In the 

future, we hope to utilize machine learning to help 

enhance this prediction. With the use of machine 

learning, we also hope to look at other band 

combinations to help derive potentially more 

indices like the SCI, that could identify more 

features within the soil. Through the use of these 

new indices or by using  more or all available 

hyperspectral bands, we hope to identify 

relationships to other key soil properties, which 

could allow for a full USCS classification scheme. 

We also hope to examine more soil types this 

summer in the Upper Peninsula over a larger area. 

This next study will also include more in-situ 

strength measurements and on-site moisture 

content readings at several site locations with 

variable soil types for robust validation and 

uncertainty quantification. Our study site will 

overlap with the NASA G-LiHT (Goddard's 

LiDAR, Hyperspectral & Thermal Imager) manned 

aircraft to allow for a comparison across different 

platforms for scalability. 
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